6,169 research outputs found

    Influence of Mg, Ag and Al substitutions on the magnetic excitations in the triangular-lattice antiferromagnet CuCrO2

    Full text link
    Magnetic excitations in CuCrO2_{2}, CuCr0.97_{0.97}Mg0.03_{0.03}O2_{2}, Cu0.85_{0.85}Ag0.15_{0.15}CrO2_{2}, and CuCr0.85_{0.85}Al0.15_{0.15}O2_{2} have been studied by powder inelastic neutron scattering to elucidate the element substitution effects on the spin dynamics in the Heisenberg triangular-lattice antiferromagnet CuCrO2_{2}. The magnetic excitations in CuCr0.97_{0.97}Mg0.03_{0.03}O2_{2} consist of a dispersive component and a flat component. Though this feature is apparently similar to CuCrO2_{2}, the energy structure of the excitation spectrum shows some difference from that in CuCrO2_{2}. On the other hand, in Cu0.85_{0.85}Ag0.15_{0.15}CrO2_{2} and CuCr0.85_{0.85}Al0.15_{0.15}O2_{2} the flat components are much reduced, the low-energy parts of the excitation spectra become intense, and additional low-energy diffusive spin fluctuations are induced. We argued the origins of these changes in the magnetic excitations are ascribed to effects of the doped holes or change of the dimensionality in the magnetic correlations.Comment: 7 pages, 5 figure

    Super-critical Accretion Flows around Black Holes: Two-dimensional, Radiation-pressure-dominated Disks with Photon-trapping

    Full text link
    The quasi-steady structure of super-critical accretion flows around a black hole is studied based on the two-dimensional radiation-hydrodynamical (2D-RHD) simulations. The super-critical flow is composed of two parts: the disk region and the outflow regions above and below the disk. Within the disk region the circular motion as well as the patchy density structure are observed, which is caused by Kelvin-Helmholtz instability and probably by convection. The mass-accretion rate decreases inward, roughly in proportion to the radius, and the remaining part of the disk material leaves the disk to form outflow because of strong radiation pressure force. We confirm that photon trapping plays an important role within the disk. Thus, matter can fall onto the black hole at a rate exceeding the Eddington rate. The emission is highly anisotropic and moderately collimated so that the apparent luminosity can exceed the Eddington luminosity by a factor of a few in the face-on view. The mass-accretion rate onto the black hole increases with increase of the absorption opacity (metalicity) of the accreting matter. This implies that the black hole tends to grow up faster in the metal rich regions as in starburst galaxies or star-forming regions.Comment: 16 pages, 12 figures, accepted for publication in ApJ (Volume 628, July 20, 2005 issue

    A prediction for bubbling geometries

    Full text link
    We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.Comment: 21 pages, latex; v.2 reference added; v.3 minor correction

    Bubbling Calabi-Yau geometry from matrix models

    Full text link
    We study bubbling geometry in topological string theory. Specifically, we analyse Chern-Simons theory on both the 3-sphere and lens spaces in the presence of a Wilson loop insertion of an arbitrary representation. For each of these three manifolds we formulate a multi-matrix model whose partition function is the vev of the Wilson loop and compute the spectral curve. This spectral curve is the reduction to two dimensions of the mirror to a Calabi-Yau threefold which is the gravitational dual of the Wilson loop insertion. For lens spaces the dual geometries are new. We comment on a similar matrix model which appears in the context of Wilson loops in AdS/CFT.Comment: 30 pages; v.2 reference added, minor correction

    BIons in topological string theory

    Full text link
    When many fundamental strings are stacked together, they puff up into D-branes. BIons and giant gravitons are the examples of such D-brane configurations that arise from coincident strings. We propose and demonstrate analogous transitions in topological string theory. Such transitions can also be understood in terms of the Fourier transform of D-brane amplitudes.Comment: 21 pages; v.2 references added; v.3 reference added; v.4 minor corrections; v.5 substantial rewritin

    Polaronic Heat Capacity in The Anderson - Hasegawa Model

    Get PDF
    An exact treatment of the Anderson - Hasegawa two - site model, incorporating the presence of superexchange and polarons, is used to compute the heat capacity. The calculated results point to the dominance of the lattice contribution, especially in the ferromagnetic regime. This behavior is in qualitative agreement with experimental findings.Comment: 9 pages, Revtex, 4 postscript figure

    Wilson Loops, Geometric Transitions and Bubbling Calabi-Yau's

    Get PDF
    Motivated by recent developments in the AdS/CFT correspondence, we provide several alternative bulk descriptions of an arbitrary Wilson loop operator in Chern-Simons theory. Wilson loop operators in Chern-Simons theory can be given a description in terms of a configuration of branes or alternatively anti-branes in the resolved conifold geometry. The representation of the Wilson loop is encoded in the holonomy of the gauge field living on the dual brane configuration. By letting the branes undergo a new type of geometric transition, we argue that each Wilson loop operator can also be described by a bubbling Calabi-Yau geometry, whose topology encodes the representation of the Wilson loop. These Calabi-Yau manifolds provide a novel representation of knot invariants. For the unknot we confirm these identifications to all orders in the genus expansion.Comment: 26 pages; v.2 typos corrected, explanations clarified; v.3 typos corrected, reference adde

    D-branes as a Bubbling Calabi-Yau

    Full text link
    We prove that the open topological string partition function on a D-brane configuration in a Calabi-Yau manifold X takes the form of a closed topological string partition function on a different Calabi-Yau manifold X_b. This identification shows that the physics of D-branes in an arbitrary background X of topological string theory can be described either by open+closed string theory in X or by closed string theory in X_b. The physical interpretation of the ''bubbling'' Calabi-Yau X_b is as the space obtained by letting the D-branes in X undergo a geometric transition. This implies, in particular, that the partition function of closed topological string theory on certain bubbling Calabi-Yau manifolds are invariants of knots in the three-sphere.Comment: 32 pages; v.2 reference adde
    corecore